697 research outputs found

    CTEMP: A Chinese Temporal Parser for Extracting and Normalizing Temporal Information

    Full text link
    Department of ComputingRefereed conference pape

    Quantum Step Heights in Hysteresis Loops of Molecular Magnets

    Full text link
    We present an analytical theory on the heights of the quantum steps observed in the hysteresis loops of molecular magnets. By considering the dipolar interaction between molecular spins, our theory successfully yields the step heights measured in experiments, and reveals a scaling law for the dependence of the heights on the sweeping rates hidden in the experiment data on Fe8_8 and Mn4_4. With this theory, we show how to accurately determine the tunnel splitting of a single molecular spin from the step heights.Comment: 4 pages, 5 figure

    Detailed single crystal EPR lineshape measurements for the single molecule magnets Fe8Br and Mn12-ac

    Full text link
    It is shown that our multi-high-frequency (40-200 GHz) resonant cavity technique yields distortion-free high field EPR spectra for single crystal samples of the uniaxial and biaxial spin S = 10 single molecule magnets (SMMs) [Mn12O12(CH3COO)16(H2O)4].2CH3COOH.4H2O and [Fe8O2(OH)12(tacn)6]Br8.9H2O. The observed lineshapes exhibit a pronounced dependence on temperature, magnetic field, and the spin quantum numbers (Ms values) associated with the levels involved in the transitions. Measurements at many frequencies allow us to separate various contributions to the EPR linewidths, including significant D-strain, g-strain and broadening due to the random dipolar fields of neighboring molecules. We also identify asymmetry in some of the EPR lineshapes for Fe8, and a previously unobserved fine structure to some of the EPR lines for both the Fe8 and Mn12 systems. These findings prove relevant to the mechanism of quantum tunneling of magnetization in these SMMs.Comment: Phys. Rev. B, accepted with minor revision

    Nuclear spin-lattice relaxation in ferrimagnetic clusters and chains: A contrast between zero and one dimensions

    Full text link
    Motivated by ferrimagnetic oligonuclear and chain compounds synthesized by Caneschi et al., both of which consist of alternating manganese(II) ions and nitronyl-nitroxide radicals, we calculate the nuclear spin-lattice relaxation rate 1/T_1 employing a recently developed modified spin-wave theory. 1/T_1 as a function of temperature drastically varies with the location of probe nuclei in both clusters and chains, though the relaxation time scale is much larger in zero dimension than in one dimension. 1/T_1 as a function of an applied field in long chains forms a striking contrast to that in finite clusters, diverging with decreasing field like inverse square root at low temperatures and logarithmically at high temperatures.Comment: to be published in Phys. Rev. B 68 August 01 (2003

    Relativistic Hydrodynamic Evolutions with Black Hole Excision

    Full text link
    We present a numerical code designed to study astrophysical phenomena involving dynamical spacetimes containing black holes in the presence of relativistic hydrodynamic matter. We present evolutions of the collapse of a fluid star from the onset of collapse to the settling of the resulting black hole to a final stationary state. In order to evolve stably after the black hole forms, we excise a region inside the hole before a singularity is encountered. This excision region is introduced after the appearance of an apparent horizon, but while a significant amount of matter remains outside the hole. We test our code by evolving accurately a vacuum Schwarzschild black hole, a relativistic Bondi accretion flow onto a black hole, Oppenheimer-Snyder dust collapse, and the collapse of nonrotating and rotating stars. These systems are tracked reliably for hundreds of M following excision, where M is the mass of the black hole. We perform these tests both in axisymmetry and in full 3+1 dimensions. We then apply our code to study the effect of the stellar spin parameter J/M^2 on the final outcome of gravitational collapse of rapidly rotating n = 1 polytropes. We find that a black hole forms only if J/M^2<1, in agreement with previous simulations. When J/M^2>1, the collapsing star forms a torus which fragments into nonaxisymmetric clumps, capable of generating appreciable ``splash'' gravitational radiation.Comment: 17 pages, 14 figures, submitted to PR

    Management and outcomes of patients with left atrial appendage thrombus prior to percutaneous closure

    Get PDF
    Altres ajuts: Fundación Interhospitalaria para la Investigación Cardiovascular (FIC Foundation); Abbott.Objective: Left atrial appendage (LAA) thrombus has heretofore been considered a contraindication to percutaneous LAA closure (LAAC). Data regarding its management are very limited. The aim of this study was to analyse the medical and invasive treatment of patients referred for LAAC in the presence of LAA thrombus. Methods: This multicentre observational registry included 126 consecutive patients referred for LAAC with LAA thrombus on preprocedural imaging. Treatment strategies included intensification of antithrombotic therapy (IAT) or direct LAAC. The primary and secondary endpoints were a composite of bleeding, stroke and death at 18 months, and procedural success, respectively. Results: IAT was the preferred strategy in 57.9% of patients, with total thrombus resolution observed in 60.3% and 75.3% after initial and subsequent IAT, respectively. Bleeding complications and stroke during IAT occurred in 9.6% and 2.9%, respectively, compared with 3.8% bleeding and no embolic events in the direct LAAC group before the procedure. Procedural success was 90.5% (96.2% vs 86.3% in direct LAAC and IAT group, respectively, p=0.072), without cases of in-hospital thromboembolic complications. The primary endpoint occurred in 29.3% and device-related thrombosis was found in 12.8%, without significant difference according to treatment strategy. Bleeding complications at 18 months occurred in 22.5% vs 10.5% in the IAT and direct LAAC group, respectively (p=0.102). Conclusion: In the presence of LAA thrombus, IAT was the initial management strategy in half of our cohort, with initial thrombus resolution in 60% of these, but with a relatively high bleeding rate (∼10%). Direct LAAC was feasible, with high procedural success and absence of periprocedural embolic complications. However, a high rate of device-related thrombosis was detected during follow-up

    Shrinking a large dataset to identify variables associated with increased risk of Plasmodium falciparum infection in Western Kenya

    Get PDF
    Large datasets are often not amenable to analysis using traditional single-step approaches. Here, our general objective was to apply imputation techniques, principal component analysis (PCA), elastic net and generalized linear models to a large dataset in a systematic approach to extract the most meaningful predictors for a health outcome. We extracted predictors for Plasmodium falciparum infection, from a large covariate dataset while facing limited numbers of observations, using data from the People, Animals, and their Zoonoses (PAZ) project to demonstrate these techniques: data collected from 415 homesteads in western Kenya, contained over 1500 variables that describe the health, environment, and social factors of the humans, livestock, and the homesteads in which they reside. The wide, sparse dataset was simplified to 42 predictors of P. falciparum malaria infection and wealth rankings were produced for all homesteads. The 42 predictors make biological sense and are supported by previous studies. This systematic data-mining approach we used would make many large datasets more manageable and informative for decision-making processes and health policy prioritization

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
    corecore